Hominid

The Hominidae (/hɒˈmɪnɨdiː/), also known as great apes,[notes 1] or hominids, form a taxonomic family of primates, including four extant genera: orangutans (Pongo) with two species extant; gorillas (Gorilla) with two species; chimpanzees (Pan) with two species; and humans (Homo) with one species.[1]
Several revisions over time in classifying the great apes have caused a varied use of the word hominid. Its original meaning referred only to humans (Homo) and their closest relatives; that restrictive meaning now is largely assumed by the term “hominin”, which comprises all members of the human clade after the split from the chimpanzees. The modern meaning of “hominid” refers to all the great apes including humans. However, usage still varies, and some scientists and laypersons may still use the term in the traditional, more restrictive, meaning; the scholarly literature generally will show the traditional usage until around the turn of the 21st century.

In the early Miocene, about 22 million years ago, there were many kinds of arboreally adapted primitive catarrhines from East Africa; the variety suggests a long history of prior diversification. Fossils at 20 million years ago include fragments attributed to Victoriapithecus, the earliest Old World Monkey. Among the genera thought to be in the ape lineage leading up to 13 million years ago are Proconsul, Rangwapithecus, Dendropithecus, Limnopithecus, Nacholapithecus, Equatorius, Nyanzapithecus, Afropithecus, Heliopithecus, and Kenyapithecus, all from East Africa.
At sites far distant from East Africa, the presence of other generalized non-cercopithecids, that is, non-monkey primates, of middle Miocene age—Otavipithecus from cave deposits in Namibia, and Pierolapithecus and Dryopithecus from France, Spain and Austria—is further evidence of a wide diversity of ancestral ape forms across Africa and the Mediterranean basin during the relatively warm and equable climatic regimes of the early and middle Miocene. The most recent of these far-flung Miocene apes (hominoids) is Oreopithecus, from the fossil-rich coal beds in northern Italy and dated to 9 million years ago.
Molecular evidence indicates that the lineage of gibbons (family Hylobatidae), the lesser apes, diverged from that of the great apes some 18–12 million years ago, and that of orangutans (subfamily Ponginae) diverged from the other great apes at about 12 million years. There are no fossils that clearly document the ancestry of gibbons, which may have originated in a still-unknown South East Asian hominoid population; but fossil proto-orangutans, dated to around 10 million years ago, may be represented by Sivapithecus from India and Griphopithecus from Turkey.[5]

A reconstruction of a female Australopithecus afarensis (National Museum of Natural History)

Species close to the last common ancestor of gorillas, chimpanzees and humans may be represented by Nakalipithecus fossils found in Kenya and Ouranopithecus found in Greece. Molecular evidence suggests that between 8 and 4 million years ago, first the gorillas (genus Gorilla), and then the chimpanzees (genus Pan) split off from the line leading to the humans. Human DNA is approximately 98.4% identical to that of chimpanzees when comparing single nucleotide polymorphisms (see human evolutionary genetics). The fossil record, however, of gorillas and chimpanzees is limited; both poor preservation—rain forest soils tend to be acidic and dissolve bone—and sampling bias probably contribute most to this problem.
Other hominins probably adapted to the drier environments outside the African equatorial belt; and there they encountered antelope, hyenas, dogs, pigs, elephants, horses, and other forms becoming adapted to surviving in the East African savannas, particularly the regions of the Sahel and the Serengeti. The wet equatorial belt contracted after about 8 million years ago, and there is very little fossil evidence for the divergence of the hominin lineage from that of gorillas and chimpanzees—which split was thought to have occurred around that time. The earliest fossils argued by some to belong to the human lineage are Sahelanthropus tchadensis (7 Ma) and Orrorin tugenensis (6 Ma), followed by Ardipithecus (5.5–4.4 Ma), with species Ar. kadabba and Ar. ramidus.

What id Trigonometry?

Trigonometry is a branch of mathematics that studies relationships between the sides and angles of triangles. Trigonometry is found all throughout geometry, as every straight-sided shape may be broken into as a collection of triangles. Further still, trigonometry has astoundingly intricate relationships to other branches of mathematics, in particular complex numbers, infinite series, logarithms and calculus.

The word trigonometry is a 16th-century Latin derivative from the Greek words for triangle (trigōnon) and measure (metron). Though the field emerged in Greece during the third century B.C., some of the most important contributions (such as the sine function) came from India in the fifth century A.D. Because early trigonometric works of Ancient Greece have been lost, it is not known whether Indian scholars developed trigonometry independently or after Greek influence. According to Victor Katz in “A History of Mathematics (3rd Edition)” (Pearson, 2008), trigonometry developed primarily from the needs of Greek and Indian astronomers.

Rational Number

In mathematics, a rational number is any number that can be expressed as the quotient or fraction p/q of two integers, p and q, with the denominator q not equal to zero.[1] Since q may be equal to 1, every integer is a rational number. The set of all rational numbers is usually denoted by a boldface Q (or blackboard bold \mathbb{Q},Unicode );[2] it was thus denoted in 1895 by Peano after quoziente, Italian for “quotient“.

The decimal expansion of a rational number always either terminates after a finite number of digits or begins to repeat the same finite sequence of digits over and over. Moreover, any repeating or terminating decimal represents a rational number. These statements hold true not just for base 10, but also for any other integer base (e.g. binary, hexadecimal).

Embedding of integers

Any integer n can be expressed as the rational number n/1.

Equality

\frac{a}{b} = \frac{c}{d} if and only if ad = bc.

Ordering

Where both denominators are positive:

\frac{a}{b} < \frac{c}{d} if and only if ad < bc.

If either denominator is negative, the fractions must first be converted into equivalent forms with positive denominators, through the equations:

\frac{-a}{-b} = \frac{a}{b}

and

\frac{a}{-b} = \frac{-a}{b}.

Addition

Two fractions are added as follows:

\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}.

Subtraction

\frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}.

Multiplication

The rule for multiplication is:

\frac{a}{b} \cdot\frac{c}{d} = \frac{ac}{bd}.

Division

Where c ≠ 0:

\frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}.

Note that division is equivalent to multiplying by the reciprocal of the divisor fraction:

\frac{ad}{bc} = \frac{a}{b} \times \frac{d}{c}.

Inverse

Additive and multiplicative inverses exist in the rational numbers:

 - \left( \frac{a}{b} \right) = \frac{-a}{b} = \frac{a}{-b} \quad\mbox{and}\quad 
        \left(\frac{a}{b}\right)^{-1} = \frac{b}{a} \mbox{ if } a \neq 0.

Exponentiation to integer power

If n is a non-negative integer, then

\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}

and (if a ≠ 0):

\left(\frac{a}{b}\right)^{-n} = \frac{b^n}{a^n}.

Continued fraction representation

Main article: Continued fraction

A finite continued fraction is an expression such as

a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{ \ddots + \cfrac{1}{a_n} }}},

where an are integers. Every rational number a/b has two closely related expressions as a finite continued fraction, whose coefficients an can be determined by applying the Euclidean algorithm to (a,b).

Formal construction

A diagram showing a representation of the equivalent classes of pairs of integers

Mathematically we may construct the rational numbers as equivalence classes of ordered pairs of integers(m,n), with n ≠ 0. This space of equivalence classes is the quotient space (Z × (Z \ {0})) / ~, where(m1,n1) ~ (m2,n2) if, and only if, m1n2m2n1 = 0. We can define addition and multiplication of these pairs with the following rules:

\left(m_1, n_1\right) + \left(m_2, n_2\right) \equiv \left(m_1n_2 + n_1m_2, n_1n_2\right)
\left(m_1, n_1\right) \times \left(m_2, n_2\right) \equiv \left(m_1m_2, n_1n_2\right)

and, if m2 ≠ 0, division by

\frac{\left(m_1, n_1\right)} {\left(m_2, n_2\right)} \equiv \left(m_1n_2, n_1m_2\right).

The equivalence relation (m1,n1) ~ (m2,n2) if, and only if, m1n2m2n1 = 0 is a congruence relation, i.e. it is compatible with the addition and multiplication defined above, and we may define Q to be the quotient set(Z × (Z \ {0})) / ~, i.e. we identify two pairs (m1,n1) and (m2,n2) if they are equivalent in the above sense. (This construction can be carried out in any integral domain: see field of fractions.) We denote by [(m1,n1)] the equivalence class containing (m1,n1). If (m1,n1) ~ (m2,n2) then, by definition, (m1,n1) belongs to [(m2,n2)] and (m2,n2) belongs to [(m1,n1)]; in this case we can write [(m1,n1)] = [(m2,n2)]. Given any equivalence class [(m,n)] there are a countably infinite number of representation, since

\cdots  = [(-2m,-2n)] = [(-m,-n)] = [(m,n)] = [(2m,2n)] = \cdots.

The canonical choice for [(m,n)] is chosen so that n is positive and gcd(m,n) = 1, i.e. m and n share no common factors, i.e. m and n are coprime. For example, we would write [(1,2)] instead of [(2,4)] or [(−12,−24)], even though [(1,2)] = [(2,4)] = [(−12,−24)].

We can also define a total order on Q. Let ∧ be the and-symbol and ∨ be the or-symbol. We say that [(m1,n1)] ≤ [(m2,n2)] if:

(n_1n_2 > 0 \ \and \ m_1n_2 \le n_1m_2) \ \or \ (n_1n_2 < 0 \ \and  \ m_1n_2 \ge n_1m_2).

The integers may be considered to be rational numbers by the embedding that maps m to [(m,1)].

Properties

A diagram illustrating the countability of the rationals

The set Q, together with the addition and multiplication operations shown above, forms a field, the field of fractions of the integers Z.

The rationals are the smallest field with characteristic zero: every other field of characteristic zero contains a copy of Q. The rational numbers are therefore the prime field for characteristic zero.

The algebraic closure of Q, i.e. the field of roots of rational polynomials, is the algebraic numbers.

The set of all rational numbers is countable. Since the set of all real numbers is uncountable, we say that almost all real numbers are irrational, in the sense of Lebesgue measure, i.e. the set of rational numbers is a null set.

The rationals are a densely ordered set: between any two rationals, there sits another one, and, therefore, infinitely many other ones. For example, for any two fractions such that

\frac{a}{b} < \frac{c}{d}

(where b,d are positive), we have

\frac{a}{b} < \frac{ad + bc}{2bd} < \frac{c}{d}.

Any totally ordered set which is countable, dense (in the above sense), and has no least or greatest element is order isomorphic to the rational numbers.

Real numbers and topological properties[edit]

The rationals are a dense subset of the real numbers: every real number has rational numbers arbitrarily close to it. A related property is that rational numbers are the only numbers with finite expansions as regular continued fractions.

By virtue of their order, the rationals carry an order topology. The rational numbers, as a subspace of the real numbers, also carry a subspace topology. The rational numbers form a metric space by using the absolute difference metric d(x,y) = |xy|, and this yields a third topology on Q. All three topologies coincide and turn the rationals into a topological field. The rational numbers are an important example of a space which is not locally compact. The rationals are characterized topologically as the unique countable metrizable space without isolated points. The space is also totally disconnected. The rational numbers do not form a complete metric space; the real numbers are the completion of Q under the metric d(x,y) = |xy|, above.

p-adic numbers[edit]

See also: p-adic Number

In addition to the absolute value metric mentioned above, there are other metrics which turn Q into a topological field:

Let p be a prime number and for any non-zero integer a, let |a|p = pn, where pn is the highest power of p dividing a.

In addition set |0|p = 0. For any rational number a/b, we set |a/b|p = |a|p / |b|p.

Then dp(x,y) = |xy|p defines a metric on Q.

The metric space (Q,dp) is not complete, and its completion is the p-adic number field Qp. Ostrowski’s theorem states that any non-trivial absolute value on the rational numbers Q is equivalent to either the usual real absolute value or a p-adic absolute value.

Saturn

Saturn is the sixth planet from the Sun and the second largest in the Solar System, after Jupiter. It is a gas giantwith an average radius about nine times that of Earth.[10][11] Although only one-eighth the average density of Earth, with its larger volume Saturn is just over 95 times more massive.[12][13][14] Saturn is named after the Roman god of agriculture, its astronomical symbol () represents the god’s sickle.

Saturn’s interior is probably composed of a core of iron–nickel and rock (silicon and oxygen compounds). This core is surrounded by a deep layer of metallic hydrogen, an intermediate layer of liquid hydrogen and liquid helium, and finally outside the Frenkel line a gaseous outer layer.[15] Saturn has a pale yellow hue due to ammonia crystals in its upper atmosphere. Electrical current within the metallic hydrogen layer is thought to give rise to Saturn’s planetarymagnetic field, which is weaker than Earth’s, but has a magnetic moment 580 times that of Earth due to Saturn’s larger size. Saturn’s magnetic field strength is around one-twentieth the strength of Jupiter’s.[16] The outeratmosphere is generally bland and lacking in contrast, although long-lived features can appear. Wind speeds on Saturn can reach 1,800 km/h (500 m/s), higher than on Jupiter, but not as high as those on Neptune.[17]

Saturn has a prominent ring system that consists of nine continuous main rings and three discontinuous arcs and that is composed mostly of ice particles with a smaller amount of rocky debris and dust. Sixty-two[18] moons are known to orbit Saturn, of which fifty-three are officially named. This does not include the hundreds of moonletscomprising the rings. Titan, Saturn’s largest and the Solar System’s second largest moon, is larger than the planetMercury and is the only moon in the Solar System to have a substantial atmosphere.

Saturn at its equinox.

Saturn is a gas giant because it is predominantly composed of hydrogen and helium (‘gas’). It lacks a definite surface, though it may have a solid core.[20] Saturn’s rotation causes it to have the shape of an oblate spheroid; that is, it is flattened at the poles and bulges at its equator. Its equatorial and polar radii differ by almost 10%: 60,268 km versus 54,364 km, respectively.[3] Jupiter, Uranus, and Neptune, the other giant planets in the Solar System, are also oblate but to a lesser extent. Saturn is the only planet of the Solar System that is less dense than water—about 30% less.[21] Although Saturn’s core is considerably denser than water, the average specific density of the planet is 0.69 g/cm3 due to the atmosphere. Jupiter has 318 times the Earth’s mass,[22] while Saturn is 95 times the mass of the Earth,[3] Together, Jupiter and Saturn hold 92% of the total planetary mass in the Solar System.[23]

On 8 January 2015, NASA reported determining the center of the planet Saturn and its family of moons to within 4 km (2.5 mi).[24]

Asteroids

Asteroids are minor planets, especially those of the inner Solar System. The larger ones have also been calledplanetoids. These terms have historically been applied to any astronomical object orbiting the Sun that did not show the disc of a planet and was not observed to have the characteristics of an active comet, but as minor planets in the outer Solar System were discovered, they were often distinguished from traditional asteroids.[1]Their volatile-based surfaces were found to resemble comets. They were named centaurs, Neptune trojans, and trans-Neptunian objects, types of minor planets that have properties distinct from those in the asteroid belt. In this article the term “asteroid” refers to the minor planets of the inner Solar System.

There are millions of asteroids, many thought to be the shattered remnants of planetesimals, bodies within the young Sun’s solar nebula that never grew large enough to become planets.[2] The large majority of known asteroids orbit in the asteroid belt between the orbits of Mars and Jupiter, or are co-orbital with Jupiter (theJupiter Trojans). However, other orbital families exist with significant populations, including the near-Earth asteroids. Individual asteroids are classified by their characteristic spectra, with the majority falling into three main groups: C-type, S-type, and M-type. These were named after and are generally identified with carbon-rich, stony, and metallic compositions, respectively.

Mixtures

In chemistry, a mixture is a material system made up of two or more different substances which are mixed but are not combined chemically. A mixture refers to the physical combination of two or more substances on which the identities are retained and are mixed in the form of solutions, suspensions, and colloids.

Mixtures are the one product of a mechanical blending or mixing of chemical substances like elements and compounds, without chemical bonding or other chemical change, so that each ingredient substance retains its own chemical properties and makeup.[1] Despite that there are no chemical changes to its constituents, the physical properties of a mixture, such as its melting point, may differ from those of the components. Some mixtures can be separated into their components byphysical (mechanical or thermal) means. Azeotropes are one kind of mixture that usually pose considerable difficulties regarding the separation processes required to obtain their constituents (physical or chemical processes or, even a blend of them).

Mixtures can be either homogeneous or heterogeneous. A homogeneous mixture is a type of mixture in which the composition is uniform and every part of the solution has the same properties. A heterogeneous mixture is a type of mixture in which the components can be seen, as there are two or more phases present. One example of a mixture is air. Air is a homogeneous mixture of the gaseous substances nitrogen, oxygen, and smaller amounts of other substances. Salt, sugar, and many other substances dissolve in water to form homogeneous mixtures. A homogeneous mixture in which there is both a solute and solvent present is also a solution. Mixtures can have any amounts of ingredients.

Human Lungs

The human lungs are the organs of respiration. Humans have two lungs, a right lung and a left lung. The right lung consists of three lobes while the left lung is slightly smaller consisting of only two lobes (the left lung has a “cardiac notch” allowing space for the heart within the chest).[1] Together, the lungs contain approximately 2,400 kilometres (1,500 mi) of airways and 300 to 500 million alveoliLungs diagram detailed.svg

The lungs are located within the thoracic cavity, on either side of the heart and close to the backbone. They are enclosed and protected by the ribcage. The left lung has a lateral indentation which is shaped to accommodate the position of the heart. The right lung is a little shorter than the left lung and this is to accommodate the positioning of the liver. Both lungs have broad bases enabling them to rest on the diaphragm without causing displacement. Each lung near to the centre has a recessed region called the hilum which is the entry point for the root of the lung. (Root here means the anchoring part of a structure.) The bronchi and pulmonary vessels extend from the heart and the trachea to connect each lung by way of the root.

 

 

Types of Metamorphism in Metamorphic Rocks

Contact metamorphism

A contact metamorphic rock made of interlayered calcite and serpentine from the Precambrian of Canada. Once thought to be a fossil called Eozoöncanadense. Scale in mm.

Rock contact metamorphism eng big text.jpg

Contact metamorphism is the name given to the changes that take place when magma is injected into the surrounding solid rock (country rock). The changes that occur are greatest wherever the magma comes into contact with the rock because the temperatures are highest at this boundary and decrease with distance from it. Around the igneous rock that forms from the cooling magma is a metamorphosed zone called a contact metamorphism aureole. Aureoles may show all degrees of metamorphism from the contact area to unmetamorphosed (unchanged) country rock some distance away. The formation of important ore minerals may occur by the process of metasomatism at or near the contact zone.

When a rock is contact altered by an igneous intrusion it very frequently becomes more indurated, and more coarsely crystalline. Many altered rocks of this type were formerly called hornstones, and the term hornfels is often used by geologists to signify those fine grained, compact, non-foliated products of contact metamorphism. A shale may become a darkargillaceous hornfels, full of tiny plates of brownish biotite; a marl or impure limestone may change to a grey, yellow or greenish lime-silicate-hornfels or siliceous marble, tough and splintery, with abundant augite, garnet, wollastonite and other minerals in which calcite is an important component. A diabase or andesite may become a diabase hornfels or andesite hornfels with development of new hornblende and biotite and a partial recrystallization of the original feldspar. Chert or flintmay become a finely crystalline quartz rock; sandstones lose their clastic structure and are converted into a mosaic of small close-fitting grains of quartz in a metamorphic rock called quartzite.

If the rock was originally banded or foliated (as, for example, a laminated sandstone or a foliated calc-schist) this character may not be obliterated, and a banded hornfels is the product; fossils even may have their shapes preserved, though entirely recrystallized, and in many contact-altered lavas the vesicles are still visible, though their contents have usually entered into new combinations to form minerals that were not originally present. The minute structures, however, disappear, often completely, if the thermal alteration is very profound. Thus small grains of quartz in a shale are lost or blend with the surrounding particles of clay, and the fine ground-mass of lavas is entirely reconstructed.

By recrystallization in this manner peculiar rocks of very distinct types are often produced. Thus shales may pass into cordierite rocks, or may show large crystals ofandalusite (and chiastolite), staurolite, garnet, kyanite and sillimanite, all derived from the aluminous content of the original shale. A considerable amount of mica(both muscovite and biotite) is often simultaneously formed, and the resulting product has a close resemblance to many kinds of schist. Limestones, if pure, are often turned into coarsely crystalline marbles; but if there was an admixture of clay or sand in the original rock such minerals as garnet, epidote, idocrase, wollastonite, will be present. Sandstones when greatly heated may change into coarse quartzites composed of large clear grains of quartz. These more intense stages of alteration are not so commonly seen in igneous rocks, because their minerals, being formed at high temperatures, are not so easily transformed or recrystallized.

In a few cases rocks are fused and in the dark glassy product minute crystals of spinel, sillimanite and cordierite may separate out. Shales are occasionally thus altered by basalt dikes, and feldspathic sandstones may be completely vitrified. Similar changes may be induced in shales by the burning of coal seams or even by an ordinary furnace.

There is also a tendency for metasomatism between the igneous magma and sedimentary country rock, whereby the chemicals in each are exchanged or introduced into the other. Granites may absorb fragments of shale or pieces of basalt. In that case, hybrid rocks called skarn arise, which don’t have the characteristics of normal igneous or sedimentary rocks. Sometimes an invading granite magma permeates the rocks around, filling their joints and planes of bedding, etc., with threads of quartz and feldspar. This is very exceptional but instances of it are known and it may take place on a large scale.[4]

Regional metamorphism

Mississippian marble in Big Cottonwood Canyon, Wasatch Mountains, Utah.

Dynamic metamorphism

Regional metamorphism, also known as dynamic metamorphism, is the name given to changes in great masses of rock over a wide area. Rocks can be metamorphosed simply by being at great depths below the Earth’s surface, subjected to high temperatures and the great pressure caused by the immense weight of the rock layers above. Much of the lower continental crust is metamorphic, except for recent igneous intrusions. Horizontal tectonic movements such as the collision of continents create orogenic belts, and cause high temperatures, pressures and deformation in the rocks along these belts. If the metamorphosed rocks are later uplifted and exposed by erosion, they may occur in long belts or other large areas at the surface. The process of metamorphism may have destroyed the original features that could have revealed the rock’s previous history. Recrystallization of the rock will destroy the textures and fossils present in sedimentary rocks. Metasomatism will change the original composition.

Regional metamorphism tends to make the rock more indurated and at the same time to give it a foliated, shistose or gneissic texture, consisting of a planar arrangement of the minerals, so that platy or prismatic minerals like mica and hornblende have their longest axes arranged parallel to one another. For that reason many of these rocks split readily in one direction along mica-bearing zones (schists). In gneisses, minerals also tend to be segregated into bands; thus there are seams of quartz and of mica in a mica schist, very thin, but consisting essentially of one mineral. Along the mineral layers composed of soft or fissile minerals the rocks will split most readily, and the freshly split specimens will appear to be faced or coated with this mineral; for example, a piece of mica schist looked at facewise might be supposed to consist entirely of shining scales of mica. On the edge of the specimens, however, the white folia of granular quartz will be visible. In gneisses these alternating folia are sometimes thicker and less regular than in schists, but most importantly less micaceous; they may be lenticular, dying out rapidly. Gneisses also, as a rule, contain more feldspar than schists do, and are tougher and less fissile. Contortion or crumbling of the foliation is by no means uncommon; splitting faces are undulose or puckered. Schistosity and gneissic banding (the two main types of foliation) are formed by directed pressure at elevated temperature, and to interstitial movement, or internal flow arranging the mineral particles while they are crystallizing in that directed pressure field.

Rocks that were originally sedimentary and rocks that were undoubtedly igneous may be metamorphosed into schists and gneisses. If originally of similar composition they may be very difficult to distinguish from one another if the metamorphism has been great. A quartz-porphyry, for example, and a fine feldspathic sandstone, may both be metamorphosed into a grey or pink mica-schist

Methamorphic Rocks

Metamorphic rocks arise from the transformation of existing rock types, in a process called metamorphism, which means “change in form”.[1] The original rock (protolith) is subjected to heat (temperatures greater than 150 to 200 °C) and pressure (1500 bars),[2] causing profound physical and/or chemical change. The protolith may be a sedimentary rock, an igneous rock or another older metamorphic rock.

Metamorphic rocks make up a large part of the Earth‘s crust and are classified by texture and by chemical and mineralassemblage (metamorphic facies). They may be formed simply by being deep beneath the Earth’s surface, subjected to high temperatures and the great pressure of the rock layers above it. They can form from tectonic processes such as continental collisions, which cause horizontal pressure, friction and distortion. They are also formed when rock is heated up by the intrusionof hot molten rock called magma from the Earth’s interior. The study of metamorphic rocks (now exposed at the Earth’s surface following erosion and uplift) provides information about the temperatures and pressures that occur at great depths within the Earth’s crust. Some examples of metamorphic rocks are gneiss, slate, marble, schist, and quartzite.

Metamorphic minerals

Metamorphic minerals are those that form only at the high temperatures and pressures associated with the process of metamorphism. These minerals, known asindex minerals, include sillimanite, kyanite, staurolite, andalusite, and some garnet.

Other minerals, such as olivines, pyroxenes, amphiboles, micas, feldspars, and quartz, may be found in metamorphic rocks, but are not necessarily the result of the process of metamorphism. These minerals formed during the crystallization of igneous rocks. They are stable at high temperatures and pressures and may remain chemically unchanged during the metamorphic process. However, all minerals are stable only within certain limits, and the presence of some minerals in metamorphic rocks indicates the approximate temperatures and pressures at which they formed.

The change in the particle size of the rock during the process of metamorphism is called recrystallization. For instance, the small calcite crystals in the sedimentary rock limestone and chalk change into larger crystals in the metamorphic rock marble, or in metamorphosed sandstone, recrystallization of the original quartz sand grains results in very compact quartzite, also known as metaquartzite, in which the often larger quartz crystals are interlocked. Both high temperatures and pressures contribute to recrystallization. High temperatures allow the atoms and ions in solid crystals to migrate, thus reorganizing the crystals, while high pressures cause solution of the crystals within the rock at their point of contact.

Sedimentary Rocks

Sedimentary rocks are types of rock that are formed by the deposition of material at the Earth‘s surface and within bodies of water. Sedimentation is the collective name for processes that causemineral and/or organic particles (detritus) to settle and accumulate or minerals to precipitate from asolution. Particles that form a sedimentary rock by accumulating are called sediment. Before being deposited, sediment was formed by weathering and erosion in a source area, and then transported to the place of deposition by water, wind, ice, mass movement or glaciers which are called agents of denudation.

Clastic sedimentary rocks are composed of silicate minerals and rock fragments that were transported by moving fluids (as bed load, suspended load, or by sediment gravity flows) and were deposited when these fluids came to rest. Clastic rocks are composed largely of quartz, feldspar, rock (lithic) fragments, clay minerals, and mica; numerous other minerals may be present as accessories and may be important locally.

Clastic sediment, and thus clastic sedimentary rocks, are subdivided according to the dominant particle size (diameter). Most geologists use the Udden-Wentworth grain size scale and divide unconsolidated sediment into three fractions: gravel(>2 mm diameter), sand (1/16 to 2 mm diameter), and mud (clay is <1/256 mm and silt is between 1/16 and 1/256 mm). The classification of clastic sedimentary rocks parallels this scheme; conglomerates and breccias are made mostly of gravel,sandstones are made mostly of sand, and mudrocks are made mostly of mud. This tripartite subdivision is mirrored by the broad categories of rudites, arenites, and lutites, respectively, in older literature.

Subdivision of these three broad categories is based on differences in clast shape (conglomerates and breccias), composition (sandstones), grain size and/or texture (mudrocks).

Conglomerates and breccias

Conglomerates are dominantly composed of rounded gravel and breccias are composed of dominantly angular gravel.

Sandstones

Sandstone classification schemes vary widely, but most geologists have adopted the Dott scheme,[2] which uses the relative abundance of quartz, feldspar, and lithic framework grains and the abundance of muddy matrix between these larger grains.

Composition of framework grains
The relative abundance of sand-sized framework grains determines the first word in a sandstone name. For naming purposes, the abundance of framework grains is normalized to quartz, feldspar, and lithic fragments formed from other rocks. These are the three most abundant components of sandstones; all other minerals are considered accessories and not used in the naming of the rock, regardless of abundance.
  • Quartz sandstones have >90% quartz grains
  • Feldspathic sandstones have <90% quartz grains and more feldspar grains than lithic grains
  • Lithic sandstones have <90% quartz grains and more lithic grains than feldspar grains
Abundance of muddy matrix between sand grains

When sand-sized particles are deposited, the space between the sand grains either remains open or is filled with mud (silt and/or clay sized particle).

  • “Clean” sandstones with open pore space (that may later be filled with cement) are called arenites
  • Muddy sandstones with abundant (>10%) muddy matrix are called wackes.

Six sandstone names are possible using descriptors for grain composition (quartz-, feldspathic-, and lithic-) and amount of matrix (wacke or arenite). For example, a quartz arenite would be composed of mostly (>90%) quartz grains and have little/no clayey matrix between the grains, a lithic wacke would have abundant lithic grains (<90% quartz, remainder would have more lithics than feldspar) and abundant muddy matrix, etc.

Although the Dott classification scheme[2] is widely used by sedimentologists, common names like greywacke, arkose, and quartz sandstone are still widely used by nonspecialists and in popular literature.

Mudrocks

Lower Antelope Canyon was carved out of the surrounding sandstone by both mechanical weathering and chemical weathering. Wind, sand, and water from flash flooding are the primary weathering agents.

Mudrocks are sedimentary rocks composed of at least 50% silt– and clay-sized particles. These relatively fine-grained particles are commonly transported as suspended particles by turbulent flow in water or air, and deposited as the flow calms and the particles settle out of suspension.

Most authors presently use the term “mudrock” to refer to all rocks composed dominantly of mud.[3][4][5][6] Mudrocks can be divided into siltstones (composed dominantly of silt-sized particles), mudstones (subequal mixture of silt- and clay-sized particles), and claystones (composed mostly of clay-sized particles).[3][4] Most authors use “shale” as a term for a fissilemudrock (regardless of grain size) although some older literature uses the term “shale” as a synonym for mudrock.

Biochemical sedimentary rocks

Outcrop of Ordovician oil shale (kukersite), northern Estonia

Biochemical sedimentary rocks are created when organisms use materials dissolved in air or water to build their tissue. Examples include:

  • Most types of limestone are formed from the calcareous skeletons of organisms such as corals, mollusks, andforaminifera.
  • Coal which forms as plants remove carbon from the atmosphere and combine with other elements to build their tissue.
  • Deposits of chert formed from the accumulation of siliceous skeletons from microscopic organisms such as radiolaria anddiatoms.

Chemical sedimentary rocks

Chemical sedimentary rock forms when mineral constituents in solution become supersaturated and inorganicallyprecipitate. Common chemical sedimentary rocks include oolitic limestone and rocks composed of evaporite minerals such as halite (rock salt), sylvite, barite and gypsum.

“Other” sedimentary rocks

This fourth miscellaneous category includes rocks formed by Pyroclastic flows, impact breccias, volcanic breccias, and other relatively uncommon processe